论文部分内容阅读
为提高变步长最小均方(LMS)自适应算法在噪声干扰下的时变时延跟踪性能,提出改进的变步长LMS自适应算法。该算法对MVSS-LMS算法进行误差均值补偿,改步长因子固定范围约束为动态变化约束;使用HB加权突出自适应滤波器权系数峰值,采用滑动窗遗忘加权减小计算复杂度。自适应时延估计仿真实验和消声水池目标被动定位试验表明:相比于参数固定条件下的MVSS-LMS算法和SVS-LMS算法,改进算法能够获得更好的时变时延跟踪性能。