论文部分内容阅读
[摘 要]轨道车辆不锈钢搭接接头多为部分熔透的搭接接头形式,焊接熔深过小造成焊接不稳定、强度不足影响产品性能,焊接熔深过大造成车辆外观痕迹明显影响车辆商品化质量。本研究分析了不锈钢搭接接头的焊接工艺特点,总结了激光焊接工艺参数对该类接头的影响规律,提出参数控制措施。
[关键词]激光深熔焊 激光功率 光束焦斑 材料吸收值 焊接速度 保护气体 透镜焦距 焦点位置 激光束位置
中图分类号:TG457 文献标识码:B 文章编号:1009-914X(2016)11-0008-01
1 前言
激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105W/cm2为热传导焊,该种焊接方式熔深浅、焊接速度慢;功率密度大于105~107W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有能量密度高、焊接速度快、深宽比大的特点。基于以上两种激光焊接形式的技术特点,结合轨道车辆不锈钢薄板搭接接头保证强度及要求严格外观质量的两方面要求,轨道车辆不锈钢搭接接头激光焊接形式为激光深熔焊接。
2 主要工艺参数
基于轨道车辆不锈钢搭接接头的激光焊接技术特点,分析激光焊接主要工艺参数对焊缝质量的影响,并提出控制措施。
2.1 激光功率
在光斑直径一定的前提条件下,激光功率密度的大小取决于激光功率。激光焊接中存在一个激光能量密度阈值,低于此值,工件仅发生表面熔化,焊接以热传导型进行,熔深很浅,无法应用于不锈钢搭接接头焊接。当工件上的激光功率密度超过阈值,产生小孔并形成等离子体,熔深大幅度提高,可以实现稳定的深熔焊接;当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进行,成为不稳定焊接过程,导致熔深大幅波动,严重影响焊接质量。因此要实现轨道车辆不锈钢搭接接头连续稳定焊接,较高激光功率条件下的激光深熔焊接是应用于轨道车辆不锈钢搭接接头焊接的主要形式。在光束焦斑直径一定的情况下,较高的激光功率可保证激光功率密度超过激光功率密度阈值,保证稳定一致的熔深。
2.2 光束焦斑
光束焦斑大小是激光焊接的最重要变量之一,直接决定功率密度的高低。对于激光深熔焊,同等激光功率条件下,较小的光束焦斑直径可以获得较高的功率密度,进而保证以较小热输入量来获得既满足强度指标,又满足外观要求的部分熔透搭接接头。
2.3 材料吸收值
材料对激光的吸收取决于材料的一些重要性能,如吸收率、反射率、热导率、熔化温度、蒸发温度等,其中最重要的是吸收率。影响材料对激光光束的吸收率的因素包括两个方面:首先是材料的电阻系数;其次,材料的表面光洁度对光束吸收率有较重要影响,从而对焊接效果产生明显作用。
2.4 焊接速度
焊接速度对熔深影响较大,提高速度会使热量不足造成熔深变浅,但速度过低又会导致材料过度熔化造成搭接接头外部痕迹明显,严重时甚至造成工件焊穿。所以,对于一定厚度的不锈钢搭接接头,在激光功率一定的条件下,焊接速度有一定的适用范围,保证下层板焊接熔深控制在(0.15-0.4)T(T为下层板板厚)。
2.5 保护气体
不锈钢搭接接头激光焊接过程常使用惰性气体来保护熔池,保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射,同时驱散高功率激光焊接产生的等离子屏蔽。通常使用氦、氩、氮三种保护气体。氦气价格较贵、电离能较高,因气体密度最小所以熔池保护效果一般,但因不易电离可有效抑制气体电离以让激光顺利通过,保证光束能量不受阻碍地直达工件表面,从而增加熔深,提高焊接速度,由于质轻而能逸出,不易造成气孔;氩气比较便宜,密度较大,熔池保护效果较好,但易受高温金属等离子体电离,屏蔽部分光束射向工件,造成激光能量部分损失,也制约了焊接速度的提高及熔深的增大,氩气保护条件下等离子云对熔深影响在低焊接速度区最为明显,当焊接速度提高时,它的影响就会减弱。氮气作为保护气体最便宜、密度适中、电离度介于氦气和氩气之间,适用于不锈钢搭接接头激光焊接,但有时会在搭接区易产生气孔。
2.4 透镜焦距
焊接时通常采用聚焦方式汇聚激光,一般选用254-380mm(10”-15”)焦距的透镜。光束焦斑大小与焦距成正比,焦距越短,焦斑越小。但焦距长短也影响焦深,即焦深随着焦距同步增加,所以短焦距虽可提高功率密度,但因焦深小,必须精确保持透镜与工件的距离,不利于通长焊缝焊接过程的工艺稳定性,同时过小的焦深易造成激光头距离工件间距过小导致工件无法有效压紧,也会导致焊接过程中产生的飞溅物影响反射镜表面污染,轨道车辆不锈钢激光焊搭接接头实际焊接使用的透镜建議焦距至少为254mm(10”)。
2.5 焦点位置
焦点位置也称为离焦量。焦点处功率密度最高,激光焊接时为了保持足够功率密度,焦点位置至关重要。焦点与工件表面相对位置的变化直接影响焊缝宽度与深度。在大多数激光焊接应用场合,通常将焦点的位置设置在工件表面之下约所需熔深的1/4处。
2.6 激光束位置
对不同的材料进行激光焊接时,激光束位置控制着焊缝的最终质量,特别是对接接头的情况比搭接结头的情况对此更为敏感。有些应用场合,被焊接工件的几何形状需要激光束偏转一个角度,当光束轴线与接头平面间偏转角度在100°以内时,工件对激光能量的吸收不会受到影响。
2.7 焊接起始、终止点的激光功率渐升、渐降控制
激光深熔焊接时,不管焊缝深浅,小孔现象始终存在。当焊接过程终止、关闭功率开关时,焊缝尾端将出现凹坑。另外,当激光焊层覆盖原先焊缝时,会出现对激光束过度吸收,导致焊件过热或产生气孔。 为了防止上述现象发生,可对功率起止点编制程序,使功率起始和终止时间变成可调,即起始功率在一段时间内从零升至设置功率值,并调节焊接时间,最后在焊接终止时使功率由设置功率逐渐降至零值。
3 激光深熔焊技术特点
针对轨道车辆不锈钢搭接接头,激光深熔焊具有显著的技术特点,主要表现在:
1)高的深宽比,保证外露表面几乎无焊接痕迹,保证无涂装不锈钢轨道车辆的商品化效果。
2)最小热输入保证最小的焊接变形,不锈钢车辆表面平面度指标由传统车辆的2mm/m提升至1mm/m。
3)高的功率密度保证焊缝组织的高致密性,焊缝强度、韧性和综合性能高,保证焊接接头强度和性能指标远远高于同类电阻点焊和电弧焊接头。
4)强固焊缝。因为炽热热源和对非金属组分的充分吸收,降低杂质含量、改变夹杂尺寸和其在熔池中的分布。焊接过程无需电极或填充焊丝,熔化区受污染少,使得焊缝强度、韧性至少相当于甚至超过母体金属。因为充满高温蒸气的小孔有利于焊接熔池搅拌和气体逸出,导致生成无气孔的熔透焊缝。焊后高的冷却速度又易使焊缝组织细微化。
5)激光光束可实现精确控制并可实现非接触的大气焊接过程。因为聚焦光点很小,焊缝可以高精确定位。激光输出无“惯性”,可在高速下急停和重新起始,用数控光束移动技术则可焊接三维复杂工件。
4 结论
结合轨道车辆不锈钢搭接接头的技术要求,分析激光深熔焊接各工艺要素对激光搭接接头的影响,提出激光功率、光束焦斑、材料吸收值、焊接速度、保护气体、透镜焦距、焦点位置、激光束位置以及焊接起始、终止点的激光功率渐升、渐降控制等相关要素的工艺控制措施和要求,对轨道车辆不锈钢搭接接头激光焊接工艺的制定有重要的工程应用价值和参考意义。
参考文献
[1] 王素环,肖雪峰,韩晓辉,等.不锈钢激光焊与电弧焊焊接性对比研究. [J].焊接技术,2014,43(2):18-20,2014.
[2] 高瑞全,韩晓辉,何智勇等.激光焊典型对接接头焊接性研究[J].电焊机,2013,43(3):65-69,2013.
[关键词]激光深熔焊 激光功率 光束焦斑 材料吸收值 焊接速度 保护气体 透镜焦距 焦点位置 激光束位置
中图分类号:TG457 文献标识码:B 文章编号:1009-914X(2016)11-0008-01
1 前言
激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105W/cm2为热传导焊,该种焊接方式熔深浅、焊接速度慢;功率密度大于105~107W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有能量密度高、焊接速度快、深宽比大的特点。基于以上两种激光焊接形式的技术特点,结合轨道车辆不锈钢薄板搭接接头保证强度及要求严格外观质量的两方面要求,轨道车辆不锈钢搭接接头激光焊接形式为激光深熔焊接。
2 主要工艺参数
基于轨道车辆不锈钢搭接接头的激光焊接技术特点,分析激光焊接主要工艺参数对焊缝质量的影响,并提出控制措施。
2.1 激光功率
在光斑直径一定的前提条件下,激光功率密度的大小取决于激光功率。激光焊接中存在一个激光能量密度阈值,低于此值,工件仅发生表面熔化,焊接以热传导型进行,熔深很浅,无法应用于不锈钢搭接接头焊接。当工件上的激光功率密度超过阈值,产生小孔并形成等离子体,熔深大幅度提高,可以实现稳定的深熔焊接;当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进行,成为不稳定焊接过程,导致熔深大幅波动,严重影响焊接质量。因此要实现轨道车辆不锈钢搭接接头连续稳定焊接,较高激光功率条件下的激光深熔焊接是应用于轨道车辆不锈钢搭接接头焊接的主要形式。在光束焦斑直径一定的情况下,较高的激光功率可保证激光功率密度超过激光功率密度阈值,保证稳定一致的熔深。
2.2 光束焦斑
光束焦斑大小是激光焊接的最重要变量之一,直接决定功率密度的高低。对于激光深熔焊,同等激光功率条件下,较小的光束焦斑直径可以获得较高的功率密度,进而保证以较小热输入量来获得既满足强度指标,又满足外观要求的部分熔透搭接接头。
2.3 材料吸收值
材料对激光的吸收取决于材料的一些重要性能,如吸收率、反射率、热导率、熔化温度、蒸发温度等,其中最重要的是吸收率。影响材料对激光光束的吸收率的因素包括两个方面:首先是材料的电阻系数;其次,材料的表面光洁度对光束吸收率有较重要影响,从而对焊接效果产生明显作用。
2.4 焊接速度
焊接速度对熔深影响较大,提高速度会使热量不足造成熔深变浅,但速度过低又会导致材料过度熔化造成搭接接头外部痕迹明显,严重时甚至造成工件焊穿。所以,对于一定厚度的不锈钢搭接接头,在激光功率一定的条件下,焊接速度有一定的适用范围,保证下层板焊接熔深控制在(0.15-0.4)T(T为下层板板厚)。
2.5 保护气体
不锈钢搭接接头激光焊接过程常使用惰性气体来保护熔池,保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射,同时驱散高功率激光焊接产生的等离子屏蔽。通常使用氦、氩、氮三种保护气体。氦气价格较贵、电离能较高,因气体密度最小所以熔池保护效果一般,但因不易电离可有效抑制气体电离以让激光顺利通过,保证光束能量不受阻碍地直达工件表面,从而增加熔深,提高焊接速度,由于质轻而能逸出,不易造成气孔;氩气比较便宜,密度较大,熔池保护效果较好,但易受高温金属等离子体电离,屏蔽部分光束射向工件,造成激光能量部分损失,也制约了焊接速度的提高及熔深的增大,氩气保护条件下等离子云对熔深影响在低焊接速度区最为明显,当焊接速度提高时,它的影响就会减弱。氮气作为保护气体最便宜、密度适中、电离度介于氦气和氩气之间,适用于不锈钢搭接接头激光焊接,但有时会在搭接区易产生气孔。
2.4 透镜焦距
焊接时通常采用聚焦方式汇聚激光,一般选用254-380mm(10”-15”)焦距的透镜。光束焦斑大小与焦距成正比,焦距越短,焦斑越小。但焦距长短也影响焦深,即焦深随着焦距同步增加,所以短焦距虽可提高功率密度,但因焦深小,必须精确保持透镜与工件的距离,不利于通长焊缝焊接过程的工艺稳定性,同时过小的焦深易造成激光头距离工件间距过小导致工件无法有效压紧,也会导致焊接过程中产生的飞溅物影响反射镜表面污染,轨道车辆不锈钢激光焊搭接接头实际焊接使用的透镜建議焦距至少为254mm(10”)。
2.5 焦点位置
焦点位置也称为离焦量。焦点处功率密度最高,激光焊接时为了保持足够功率密度,焦点位置至关重要。焦点与工件表面相对位置的变化直接影响焊缝宽度与深度。在大多数激光焊接应用场合,通常将焦点的位置设置在工件表面之下约所需熔深的1/4处。
2.6 激光束位置
对不同的材料进行激光焊接时,激光束位置控制着焊缝的最终质量,特别是对接接头的情况比搭接结头的情况对此更为敏感。有些应用场合,被焊接工件的几何形状需要激光束偏转一个角度,当光束轴线与接头平面间偏转角度在100°以内时,工件对激光能量的吸收不会受到影响。
2.7 焊接起始、终止点的激光功率渐升、渐降控制
激光深熔焊接时,不管焊缝深浅,小孔现象始终存在。当焊接过程终止、关闭功率开关时,焊缝尾端将出现凹坑。另外,当激光焊层覆盖原先焊缝时,会出现对激光束过度吸收,导致焊件过热或产生气孔。 为了防止上述现象发生,可对功率起止点编制程序,使功率起始和终止时间变成可调,即起始功率在一段时间内从零升至设置功率值,并调节焊接时间,最后在焊接终止时使功率由设置功率逐渐降至零值。
3 激光深熔焊技术特点
针对轨道车辆不锈钢搭接接头,激光深熔焊具有显著的技术特点,主要表现在:
1)高的深宽比,保证外露表面几乎无焊接痕迹,保证无涂装不锈钢轨道车辆的商品化效果。
2)最小热输入保证最小的焊接变形,不锈钢车辆表面平面度指标由传统车辆的2mm/m提升至1mm/m。
3)高的功率密度保证焊缝组织的高致密性,焊缝强度、韧性和综合性能高,保证焊接接头强度和性能指标远远高于同类电阻点焊和电弧焊接头。
4)强固焊缝。因为炽热热源和对非金属组分的充分吸收,降低杂质含量、改变夹杂尺寸和其在熔池中的分布。焊接过程无需电极或填充焊丝,熔化区受污染少,使得焊缝强度、韧性至少相当于甚至超过母体金属。因为充满高温蒸气的小孔有利于焊接熔池搅拌和气体逸出,导致生成无气孔的熔透焊缝。焊后高的冷却速度又易使焊缝组织细微化。
5)激光光束可实现精确控制并可实现非接触的大气焊接过程。因为聚焦光点很小,焊缝可以高精确定位。激光输出无“惯性”,可在高速下急停和重新起始,用数控光束移动技术则可焊接三维复杂工件。
4 结论
结合轨道车辆不锈钢搭接接头的技术要求,分析激光深熔焊接各工艺要素对激光搭接接头的影响,提出激光功率、光束焦斑、材料吸收值、焊接速度、保护气体、透镜焦距、焦点位置、激光束位置以及焊接起始、终止点的激光功率渐升、渐降控制等相关要素的工艺控制措施和要求,对轨道车辆不锈钢搭接接头激光焊接工艺的制定有重要的工程应用价值和参考意义。
参考文献
[1] 王素环,肖雪峰,韩晓辉,等.不锈钢激光焊与电弧焊焊接性对比研究. [J].焊接技术,2014,43(2):18-20,2014.
[2] 高瑞全,韩晓辉,何智勇等.激光焊典型对接接头焊接性研究[J].电焊机,2013,43(3):65-69,2013.