论文部分内容阅读
分析用方程 Q(f)=Q(t_1)+A_1-A_2(t_f-t)~m[1+ccos(2π log(t_f-g)/p-φ)]来模拟强震前地震能量释放过程的一些条件。式中的 Q(t)是在时间 t 以前所累积的“贝尼奥夫”总应变,t_f 是主震的时间,A_1,A2,c,m,p,都是模型的参数,Q(t_1)是已知量(t_1≤t_f 时)。表明在一定假定条件下幂指数 m=α(2-d)+1,这里 d 是主震周围地震潜在震源群震中的尺寸,参数α决定着幂律。根据这个规律,地震时释放的地震能量和总能量的比值随地震的震级而变化。模型可用于分析实验研究岩石破裂释放声能的动力学,也适用于对堪察加一些强震前地震活动性的回溯性分析。
Analysis The seismic energy release process before strong earthquakes is modeled by the equation Q (f) = Q (t_1) + A_1 -A_2 (t_f-t) ~ m [1 + ccos (2π log (t_f-g) / p -φ) Some of the conditions. Where Q (t) is the total “Benioff” strain accumulated before time t, t_f is the time of the main shock, and A_1, A2, c, m, p are the parameters of the model. Q ) Is a known amount (when t_1 ≦ t_f). It shows that the power exponent m = α (2-d) +1 under certain assumptions, where d is the size of the epicenter in the potential seismic source group around the main shock, and the parameter α determines the power law. According to this law, the ratio of seismic energy to total energy released during an earthquake varies with the magnitude of the earthquake. The model can be used to analyze the kinetics of experimental studies on the acoustic energy released by rock rupture and to apply retrospective analysis of the seismicity before some strong earthquakes in Kamchatka.