论文部分内容阅读
目的:构建一个基于YOLO算法和ResNet网络的自动检测结直肠息肉的深度卷积神经网络(deep convolutional neural network,DCNN)模型,并测试其功能。方法:选取武汉大学人民医院消化内镜中心数据库2018年1月—2019年3月的肠镜图像及视频并分为3个数据集(数据集1、3、4),另以公共数据集CVC-ClinicDB(由西班牙巴塞罗那医院提供的29个结肠镜检查视频中提取的612帧息肉图像组成)作为数据集2。数据集1(2018年1—11月的肠息肉图像3 700张,无息肉图像1 000张)用于DCNN模型构建、训练与验证;数据集2和数据集3(2019年1—3月的肠息肉图像320张,无息肉图像400张)用于DCNN模型在图像中的测试;数据集4(2018年12月肠镜视频15个,包含33个息肉),用于DCNN模型在视频中的测试。主要观察DCNN模型检测肠息肉的敏感度、特异度、准确率和假阳性率。结果:DCNN模型在数据集2中检测肠息肉的敏感度为93.19%(602/646);在数据集3中检测肠息肉的准确率为95.00%(684/720),敏感度为98.13%(314/320),特异度为92.50%(370/400),假阳性率为7.50%(30/400);在数据集4中检测息肉逐息肉个数的敏感度为100.00%(33/33),逐帧准确率为96.29%(133 840/138 998),逐帧敏感度为90.24%(4 066/4 506),逐帧特异度为96.49%(129 774/134 492),逐帧假阳性率为3.51%(4 718/134 492)。结论:构建的DCNN模型可用于自动检测结直肠息肉,在静止肠镜图像及肠镜视频中均具有较高的敏感度与特异度,且在视频中测试的假阳性率低,可用于帮助内镜医师检测结直肠息肉。“,”Objective:To establish a deep convolutional neural network (DCNN) model based on YOLO and ResNet algorithm for automatic detection of colorectal polyps and to test its function.Methods:Colonoscopy images and videos collected from the database of Digestive Endoscopy Center of Renmin Hospital of Wuhan University from January 2018 to March 2019 were divided into three databases (database 1, 3, 4). The public database CVC-ClinicDB (composed of 612 polyp images extracted from 29 colonoscopy videos provided by Barcelona Hospital, Spain) was used as the database 2. Database 1 (4 700 colonoscopy images from January 2018 to November 2018, including 3 700 intestinal polyp images and 1 000 non-polyp images) was used for establishing training and verifying the DCNN model. Database 2 (CVC-ClinicDB) and database 3 (720 colonoscopy images from January 2019 to March 2019, including 320 intestinal polyp images and 400 non-polyp images) were used for testing the DCNN model on image detection. Database 4 (15 colonoscopy videos in December 2019, containing 33 polyps) was used for testing the DCNN model on video detection. The sensitivity, specificity, accuracy and false positive rate of the DCNN model for detecting intestinal polyps were calculated.Results:The sensitivity of the DCNN model for detecting intestinal polyps in database 2 was 93.19% (602/646). In database 3, the DCNN model showed the accuracy of 95.00% (684/720), sensitivity of 98.13% (314/320), specificity of 92.50% (370/400), and false positive rate of 7.50% (30/400) for detecting intestinal polyps. In database 4, the DCNN model achieved a per-polyp-sensitivity of 100.00% (33/33), a per-image-accuracy of 96.29% (133 840/138 998), a per-image-sensitivity of 90.24% (4 066/4 506), a per-image-specificity of 96.49% (129 774/134 492), and a per-image-false positive rate of 3.51% (4 718/134 492).Conclusion:The DCNN model constructed in the study has a high sensitivity and specificity for automatic detection of colorectal polyps both in the colonoscopy images and videos, has a low false positive rate in the videos, and has the potential to assist endoscopists in diagnosis of colorectal polyps.