论文部分内容阅读
In order to improve wear resistance and decrease the cost, carbon and carbon nanotubes reinforced copper matrix composites were fabricated by the power metallurgy method. The effects of carbon (carbon and carbon nanotubes) volume fraction and applied load on the friction coefficient and wear rate under dry sliding of the composites were investigated at room temperature. By scanning electron microscopy (SEM), the worn surfaces and debris were observed, and wear mechanism was also analyzed and discussed. The experimental wear process consists of the run-in, steady wear and severe wear process with the increasing of sliding distance. Both the friction coefficient and wear rate of the composites first decrease and then increase with the increasing of carbon volume fraction. The minimum friction coefficient and wear rate are obtained when carbon is 4.0vol%. The wear mechanisms of the composites change from the adhesive wear and delamination wear to abrasive wear with the increasing of carbon volume fraction.
In order to improve wear resistance and decrease the cost, carbon and carbon nanotubes reinforced copper matrix composites were fabricated by the power metallurgy method. The effects of carbon (carbon and carbon nanotubes) volume fraction and applied load on the friction coefficient and wear rate under dry sliding of the composites were investigated at room temperature. By scanning electron microscopy (SEM), the worn surfaces and debris were observed, and wear mechanism was also analyzed and discussed. The experimental wear process consists of the run-in, steady wear and Both the friction coefficient and wear rate of the composites first decrease and then increase with the increasing of carbon volume fraction. The minimum friction coefficient and wear rate are obtained when carbon is 4.0 vol%. The wear mechanisms of the composites change from the adhesive wear and delamination wear to abrasive wear with the increasing of carbo n volume fraction.