论文部分内容阅读
资源均衡优化问题属于NP-Hard问题,为了能对其高效地进行求解,提出了一种新的克隆布谷鸟算法。该算法首先根据个体适应度自适应地克隆,实现种群的扩张;然后通过Levy变异实现克隆种群的更新;最后去重以及全局择优策略保留最优个体且增加种群多样性;引入非均匀变异算子均衡算法全局均匀搜索能力和局部求精能力。通过对实例进行测试,结果表明克隆布谷鸟算法在求解资源均衡优化问题上比粒子群、差分和标准布谷鸟算法具有更优的全局优化性能。