DNA为啥会自发变异

来源 :中国科学探险 | 被引量 : 0次 | 上传用户:bladehit
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  近期,一项研究表明,支配微小世界的量子力学可能有助于解释为什么基因突变会在DNA自我复制的过程中自发出现。
  DNA“点突变”
  量子力学用于描述支配原子及其亚原子成分的奇怪规则,当描述宏观世界的经典物理规则失效时,量子就会介入进行解释,在DNA的例子中,经典物理学提供一种解释,分析了为什么DNA螺旋阶梯的某一阶突然发生变化,会导致所谓的“点突变”。据悉,DNA由脱氧核苷酸组成,而脱氧核苷酸是由碱基、脱氧核糖和磷酸构成,其中碱基有4种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。DNA携带着合成RNA和蛋白质所必须的遗传信息,是生物发育和正常运作必不可少的生物大分子。
  在日前发表的一项最新研究中,研究人员探索了另一种解释,表明一种被称为质子隧穿的量子现象可以通过允许DNA中带正电荷的质子从一个位置跳跃至另一个位置,产生点突变,反之,这将微妙地改变连接DNA双螺旋结构两侧的氢桥键,当DNA进行自我复制的时候,氢桥键会出现错误。
  研究人员指出,这种微妙变化尤其可能导致DNA序列出现“错版”,当DNA链复制时,错误的DNA“字母”将配对在一起,这些字母也被称为碱基,通常以某种方式配对:A至G,G至C,但是质子隧穿会导致一些碱基混合和匹配。
  英国曼彻斯特大学计算和理论化学教授萨姆·海伊说:“关于DNA碱基对中氢键和质子转移,科学家已进行了大量计算工作,这项最新研究使用了非常精湛的计算方式来重新检验该现象。”
  然而,由于使用特定的计算方法,研究人员仅能在单碱基和碱基对的水平上模拟少部分DNA链,这意味着该模型不包括DNA双螺旋的两侧,也不包括位于DNA链上其他位置的碱基对,这些位置的结构可能对研究质子隧穿现象具有重大影响,但要模拟整个DNA链将需要巨大的计算能力,可能要等到計算能力或者方法进一步改进后才能解决该问题。
  经典物理学与量子力学
  目前,经典物理学也能提供为什么质子在DNA链周围跳跃的谜团。DNA碱基对由氢键连接在一起,氢键是一种氢原子和碱基分子之间相对较弱的吸引力,这些化学键可以通过加热被打破,因为随着温度的升高,分子会剧烈振动和抖动,导致氢原子从原来的位置弹出。
  英国萨里大学勒弗休姆量子生物学博士培训中心博士生路易·斯洛康姆说:“你可以想象整个环境在抖动、振动……一切都处于动态、在移动着。”原子在绝对零度以上的任何温度下都会摆动,因为热量会增强它们的动能或者运动。
  依据经典热力学,这种类型的振动有时会使氢原子跳到DNA的新位置,短暂地形成新键,但是原子很快就会弹回到原来的位置,由于DNA碱基的分子结构,氢原子倾向于在两对碱基之间形成某种“稳定”位置,它们将在这里保持很长时间,期间仅会短暂地逃至不寻常的“不稳定”位置。
  氢原子仅有一个质子,一个负电荷的电子,没有中子;在其形成DNA的过程中,这些原子在形成键的时候,电子会被一对碱基“夺走”。因此2014年的一篇研究报告称,实际上,当氢原子从DNA链的一端跳至另一端时,它们会以单个质子的形式进行移动,因此科学家将该现象称为“质子转移”。
  但是依据最新这项研究,经典质量转移并不能解释所有质子在DNA中跳跃的现象。从本质上讲,与我们计算量子速率的数字相比,仅通过经典热力学导致的质子在DNA中跳跃的概率非常低。换句话说,质子隧穿可能比热量自身驱动更多的质子跳跃。
  跳跃障碍
  质子隧穿依赖于不确定的量子质量,不适用于更大的空间,例如:在较大的空间中,你可以确定火车的位置及其行驶速度,并利用这些信息,预测火车何时到达下一站。
  然而,就亚原子粒子而言,它们的确切位置和速度无法同时计算出来,科学家仅能通过计算粒子以特定速度出现在某一特殊位置的概率,来捕捉到粒子的模糊图像。在质子隧穿的背景下,科学家可以计算出质子在某个位置或者另一个位置的概率——理论上讲,质子存在于宇宙任何位置的概率都是非零的。
  之前媒体曾报道称,质子隧穿意味着粒子可以穿过看似不应该通过的障碍,有时它们甚至可以跳跃障碍。
  为了预测质子在DNA中何时何处可能发生转移,研究小组确定了粒子从“稳定”位置断裂至“不稳定”位置所需的能量,该阈值就是所谓的“能量位垒”,而反弹至稳定状态所需的能量就是“反向拉垒”。
  研究小组称,与质子隧穿相比,由热量驱动的经典质子转移的能量位垒非常高。预测的质子隧穿率远远超过了经典质量转移,如果不考虑隧穿率,质子跳跃至另一个DNA碱基的概率将“非常非常接近零”。
  在作者计算的限制范围内,隧穿似乎在一对碱基之间的质子转移过程中起着中度至较大等级的作用。同时,研究小组还发现,A-T对之间质子隧穿的反向位垒比G-C要低很多,这意味着,如果一个质子从一对电子的A端隧穿至T端,它将立即返回,反向位垒的能量较低,从而使质子很容易会弹出其稳定。
  斯洛康姆说:“然而对于G-C碱基对,它有相当大的反向位垒,这意味着该状态在相当长的一段时间内是比较稳定的,因此,一旦某个质子跳跃了G-C碱基对的位垒,它可能在一段时间内保持不稳定的位置,如果这发生在DNA复制开始之前,质子可能会在DNA链的‘错误的一侧’。”
  这是因为为了复制自己,DNA首先会展开,破坏碱基对之间的键,然后,一种叫做聚合酶的物质会突然出现,将新的碱基装入开口槽中,就像拼图游戏一样。然而,问题是当聚合酶在一个不稳定位置遇到一个质子时,它可能会选择错误的“拼图碎片”作为连接的碱基,例如:一个质子可能跳跃到一个G碱基对,当聚合酶经过的时候,聚合酶附着的是T碱基对,而不是C碱基对。
  该项研究具有重要意义
  依据教科书《基因分析导论》,生物学家詹姆斯·沃森和物理学家弗朗西斯·克里克首次发现了DNA复制中的这种错误,他们是最早进行DNA研究的专家,这项最新研究表明,质子隧穿的作用——比热力学作用更重要,可能是导致这些突变的原因。
  因此在分裂过程之前,DNA存在一个脆弱时刻,此时量子效应具有重要意义。
  选择错误的“拼图碎片”作为连接的碱基从而产生的点突变可能是无关紧要的,不会改变细胞的功能或者构建蛋白质的方式,但研究人员称,它们也可能是毁灭性的,会导致镰状细胞性贫血等疾病和非小细胞肺癌等特定类型的癌症,在某些情况下,点突变也可能是十分有益的。
  尽管如此,科学家仍不知道一个质子需要在不稳定位置停留多长时间才能真正发生点突变,海伊指出,最新研究仅模拟DNA链的一小部分,为了深入了解质子隧穿发生的频率,必须模拟整个系统。
  目前,斯洛康姆和同事致力于对碱基对周围更大的环境进行建模,通过这种方式,他们可以理清量子物理学、经典物理学与DNA之间的关系,如何通过不同的机制驱动质子跳跃,该研究有助于揭晓什么条件下质子转移更容易发生,以及该现象触发有害基因突变的频率,这是一个至关重要的问题。
其他文献
2018年,互联网上的一些角落认为火星上可能会有一次大规模的火山喷发,但这只是眼睛的把戏。在火星上的阿尔西亚火山上会有一层长长的薄云随季节变化出现,现在科学家们对它的形成和消散有了更好的了解。一组研究人员利用欧航局(ESA)Mars Express上的一台昵称为“Mars Webcam(火星网络摄像头)”的相机调查了火星云的生命周期。  这种云的短暂性质和环绕火星的航天器的轨道使其形成难以被真正研
期刊
全国科学技术名词审定委员会自1985年成立以来,已陆续审定并公布出版了55种学科的规范名词。为了方便大家了解和使用这些名词,全国科技名词委决定在本刊陆续摘录各学科已公布的一部分名词。需要了解某学科公布的全部名词,请查阅已出版公布的该学科名词书。原书词条按概念体系排列,本摘录的词条排序未作改动--编者注。  (1999年公布)
期刊
美国国家航空航天局(NASA)和德国航空航天中心聯合开展的一项新研究发现,地球上的某些微生物可以暂时在火星表面生存。研究人员通过将微生物发射到地球的平流层中,测试了微生物对火星环境的耐受性。这项研究成果,有助于探索太空旅行对微生物生命的所有影响,揭示这些微生物的潜在用途以及对太空旅行的威胁。  火星表面环境的许多关键特征无法在地球表面找到或轻易复制。NASA和德国航空航天中心于2019年向平流层发
期刊
横亘夜空的银河,不仅给世界各族人民带来了许多生动的遐想,还是一座可靠的“时钟”,昭告着不同的时令。它时而高挂南北,时而低垂东西;有时候星光灿烂,有时候又清辉淡雅。人们在俯仰之间,通过它的明暗和走向,领悟着大自然的节律。  正月初八,天河回家  在北半球中纬地区,每逢初春时节夜幕降临的时候,春季星座的代表——狮子座刚从东方升起不久,冬季星空的标志——冬季大三角正高悬于南天。这段时间正是农历的正月,旧
期刊
将于今年出版刊行的《高分子命名原则》附录词汇中,拟将近期颇多用于茂金属体系中的新词agostic及中文新解“元结”推荐列入。为此,除早于1997年已在高分子通报”‘中曾加报道外,现更以较规范的方式,对订正后的结果,在《科技术语研究》这本科技刊物中加以记述。
期刊
茫茫宇宙中,演化出生命的地球是唯一的吗?为了寻找答案,科学家一直在探测与地球类似的岩质行星——类地行星。它们大多处于其主星的宜居带内,可能有着适宜生命诞生及生存的环境条件。  日前,据国外媒体报道,一个国外研究团队发现了一颗“超级地球”TOI-561b。研究人员推测,TOI-561b的体积要比地球大50%,质量大约是地球的3倍,但密度却和地球差不多。  一般而言,一颗行星越老,它的密度可能就越小,
期刊
空间站又称太空站、航天站,是一种在近地轨道长时间运行、可供多名航天员巡访、长期工作和生活的载人航天器。一般来说,空间站大都在约400公里高度的轨道上运行,比如,我国的天宫一号、天宫二号空间实验室,目前仍在轨运行的国际空间站,以及我们开始建造的中国空间站。  空间站为什么只“飞”400公里高?  大家都知道,航天发射是非常昂贵的。空间站飞往更高的轨道需要消耗更多的能量,对运载火箭的运载能力是一个很大
期刊
黑洞作为一种时空曲率大到光都无法逃脱的天体,人类也无法直接观察。当然,如果想要更深地了解黑洞,最好的方法就是能够进入其内部进行观察。据外媒报道,从大爆炸至今,黑洞是宇宙中重要的组成部分,并且可能对我们银河系中生命的形成具有深遠影响。现在,科学家找到了一种安全进入黑洞的方法,这将有助于我们解开黑洞之谜。  宇宙中存在着各种各样的黑洞,通常分为不旋转不带电荷的黑洞、不旋转带电荷黑洞、旋转不带电荷黑洞、
期刊
自从人类登陆月球以来,已经50年过去了。20世纪60年代和70年代的阿波罗计划,成功地让束缚在地球上的人类,迈向坑坑洼洼的月球表面,这个距离我们最近的天体邻居。  1969年,尼尔·阿姆斯特朗和巴兹·奥尔德林成为人类历史上第一批登陆月球的宇航员时,人们曾梦想着未来的太空任务将更加激動人心。遗憾的是,自20世纪70年代,阿波罗17号任务之后,人类不曾再次登陆月球,更不用说漫步其他星球表面。从那之后,
期刊
为了在执行深空任务的时候,经受住太空的严酷考验,我们在地球之外种植粮食时,可能需要来自细菌的一些额外帮助。最近,研究人员在国际空间站上的新发现,或许可以帮助他们开发出可以让植物抵抗太空压力的“燃料”。  与NASA合作的研究人员提到,他们在两次连续的飞行中,在国际空间站的不同位置发现并分离出四株属于甲基杆菌科的细菌。  其中一个菌株被确定为罗氏甲基杆菌(Methylorubrum rhodesia
期刊