论文部分内容阅读
地震群体的发生近来被假定为一种自组织临界现象(SOC),时空分布具有分形特征,地震的能量或地震矩具有相应于古登堡—里克特(G—R)频度一震级关系的幂律分布。实际上,严格的自组织临界行为在所有模型中并未见到,而且。它只限于那些带有弱退火(永久的)的非均匀性以及具有一种中等的构造驱动速度或应变能速率的情况。依赖于这些条件,地震分布也可能是亚临界的,也就是最大地震发生率比由古登堡—里克特定律得到的发生率小;也可能是超临界的,即最大地震发生概率比古登堡—里克特关系推测的要高,从而成为特征地震。本文将给出所有三种类型的典型震例并支持将古登堡—里克特定律普遍化,成为修正的伽玛分布(地震能量或地震矩满足幂律分布,指数项分别为正、零或负)。如果地震的分布确实是一种临界现象的话,那么在地震危险性分析中的先验假设——古登堡—里克特定律就完全失效了。地震的具体分布形式也可能系统地依赖于所选区域面积的大小。在单一断层周围的小区域内的地震分布会具有特征分布形式。这种事先不期望的欧几里得区划效应是某些地震危险性分析的基本假定中固有预处理程度的范例。另外的一些假设,比如长时间过程中的平稳性,是和自组织临界现象一致的。地震满足随机的泊松分布的假设与自组织临界现象是完全矛盾的,地震之间,就像雪崩过程那样,在近距离有强相互作用,远距离有弱相互作用。对于亚临界现象的情况,根据伽玛分布律,可以由长期滑动率独立地得出一个最大可信震级,这个震级定义为其对总矩或烈度的贡献可以忽略。这种适度的最大值可以代替古登堡一里克特定律分布中独立地插入一个截断的最大值。该最大值的确定有一定的人为因素。考虑这种最大震级对地面运动的概率贡献可以忽略,该方法可以用于地震危险性的综合分析,并且可以得到与常规方法相同的结果。
The occurrence of earthquake groups has recently been assumed as a self-organized criticality (SOC) with fractal characteristics of space-time distribution. The seismic energy or seismic moment has a magnitude corresponding to the Gutenberg-Richter (G-R) Power law distribution. In fact, strict self-organized critical behavior is not seen in all models, and. It is limited to those with weak anneal (permanent) inhomogeneities and with a moderate tectonic drive speed or strain rate. Depending on these conditions, the distribution of the earthquakes may also be subcritical, that is, the maximum occurrence of earthquakes is smaller than the incidence of Gutenberg-Ritcher’s law; or it may be supercritical, The relationship between Den Bosch and Riccarton is presumed to be a characteristic earthquake. This paper presents all three types of typical earthquakes and supports the generalization of the Gutenberg-Rickett law as a modified gamma distribution (the seismic energy or seismic moment satisfies a power-law distribution with exponential terms of positive and zero Or negative). If the distribution of earthquakes is truly a critical phenomenon, then the prior assumptions in the seismic hazard analysis - Gutenberg-Rickett’s law is completely ineffective. The exact distribution of earthquakes may also depend systematically on the size of the area chosen. The distribution of earthquakes within a small area around a single fault will have a characteristic distribution. This previously unexpected Euclidean zoning effect is an example of the degree of pretreatment inherent in some of the basic assumptions of seismic risk analysis. Other assumptions, such as the long-term stability, are consistent with the self-organized criticality. The assumption that the quake satisfies the random Poisson distribution is completely contradictory to the self-organized critical phenomenon. Between earthquakes, just like the avalanche process, there is a strong interaction at close range and a weak interaction at long distance. For subcritical phenomena, according to the gamma distribution law, a maximum credible magnitude can be independently derived from the long-term slip rate, which is defined as its negligible contribution to the total moment or intensity. Instead of inserting a truncated maximum independently of the Gutenberg-Richter’s law distribution, this modest maximum can be inserted. The maximum value of certain human factors. Considering the contribution of this maximum magnitude to the probability of ground motion negligible, this method can be applied to the comprehensive analysis of seismic hazard and the same result as the conventional method can be obtained.