论文部分内容阅读
以原子类型电性拓扑状态指数(ETSI)有效表征122个液态烃类物质的分子结构,并分别应用人工神经网络和多元线性回归方法,对这122种液态烃类物质的燃烧热进行关联和预测研究,建立应用电性拓扑状态指数预测烃类物质燃烧热的定量结构—性质相关性(QSPR)研究模型。应用人工神经网络和多元线性回归方法对训练集样本的预测平均相对误差分别为1.17%和0.95%,对测试集20种烃类物质的预测平均相对误差分别为1.49%和1.05%。实验结果表明,无论采用人工神经网络法还是多元线性回归法,燃烧热预测值与实验值一致性均令人