论文部分内容阅读
在模式分类系统中,往往需要从大量的特征中选择最优的特征子集,人工选择特征的方法往往费时费力,本文采用遗传算法(GA)对支持向量机进行封装的方法选择特征子集。首先使用遗传算法随机产生若干特征子集,通过选择、交叉和变异操作产生新的特征子集,经过若干代之后,得到最优的特征子集。在遗传算法中最重要的是适应度的确定,本文用支持向量机(SVM)作为分类器,为了避免出现“过拟和”,把特征子集的5阶交叉验证分类准确率和特征数量的联合函数作为适应度函数。对UCI机器学习库中sonar和led数据集进行实验,结果表明本方法可