论文部分内容阅读
为了提升疲劳驾驶的检测效果,以PERCOLS眼睛焦点的位置等眼部特征为参数,提出了支持向量机(SVM)疲劳驾驶检测模型。通过动感型模拟驾驶仪和ASL眼动仪等设备进行了眼部特征参数的数据采集,并以2 s的最优时窗长度对数据进行提取和筛选。完成了疲劳驾驶检测模型的训练和验证。结果表明:该模型的综合疲劳识别准确率高达83.92%,能有效地应用于疲劳驾驶检测中。