论文部分内容阅读
对聚类结果的理解有助于评价聚类效果,可以据此调整聚类过程,更高效地使用聚类结果.但是,聚类结果的理解仍然是一个尚未解决的问题.提出了基于离群点识别技术分析任意聚类算法的聚类结果,发现了聚类结果属性特征簇的方法;提出一种基于不相似性比值的离群点识别算法.通过对全部数据簇的属性描述进行离群点分析,发现各数据簇的特征属性,实现对聚类结果的理解.所提方法适用于任意聚类算法结果的分析.对UCI的iris、ZOO和Housing数据集的采用X-means、Frozen和DBScan算法的聚类结果进行聚类结果分析,实验