论文部分内容阅读
为了准确地检测出复杂网络的社团结构,提出一种基于信号自适应传递的社团发现方法。首先使信号在复杂网络上自适应地传递,从而获取网络中各节点对整个网络的影响向量,然后把网络中节点的拓扑结构转化成代数向量空间上的几何关系,最后结合聚类特性发现网络中的社团结构。为获取更加合理的空间向量,提出最佳传递次数,缩小搜索空间,增强算法寻优能力。该算法在计算机生成网络、Zachary网络和美国大学生足球赛网络上进行实验测试,并与GN算法、谱聚类算法、极值优化算法和信号传递算法进行实验对比,社团划分的准确性和精确性均有所