论文部分内容阅读
This paper analyses the heteronuclear Cosy Revamped by Asymmetric Z-gradient Echo Detection pulse sequence.General theoretical expressions of the pulse sequence with arbitrary flip angles were derived by using dipolar field treatment and signals originating from heteronuclear intermolecular single-quantum coherences (iSQCs) in highly-polarized two spin-1/2 systems were mainly discussed in order to find the optimal flip angles.The results show that signals from heteronuclear iSQCs decay slower than those from intermolecular double-quantum coherences or intermolecular zero-quantum coherences. Magical angle experiments validate that the signals are from heteronuclear iSQCs and insensitive to the imperfection of radio-frequency flip angles. All experimental observations are in excellent agreement with theoretical predictions. The quantum-mechanical treatment leads to similar predictions to the dipolar field treatment.