论文部分内容阅读
摘 要:逆向思维是创造性思维的一个组成部分,也是进行思维训练的载体,培养学生逆向思维过程也是培养学生思维敏捷性、拓展学生思维视野的过程。
关键词:逆向思维;数学教学;数学思维
逆向思维是数学思维的一个重要形式,是创造性思维的一个组成部分,也是进行思维训练的载体,培养学生逆向思维过程是培养学生思维敏捷性的过程,拓展学生思维视野的过程。本人在多年教学实践中注重以下几个方面的尝试,获得了一定的成效。
一、在概念教学中注意培养反方向的思考与训练
数学概念、定义总是双向的,我们在平时的教学中,只秉承了从左到右的运用,于是形成了定向思维,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规的应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如,解|x 1| |x 2|>4这个不等式,解:在数轴上标出-1,-2这两个点。(并分为三个区域:即x小于等于-2,x大于-2且小于-1,x大于等于-1注意要做到不重不漏!)从绝对值概念的反向考虑其条件,所以(1)当x≤-2时,(x 1为负,所以取相反数,x 2也一样)。-(x 1)-(x 2)>4解得x<-3.5,又因为x≤-2(前提条件)所以x<-3.5。(2)当-2-1时(都为正,俩绝对值均可直接去除)得x 1 x 2>4,解得:x>0.5,又因为x>-1,所以x>0.5。综合(1)(2)(3)得解集为x大于0.5或x小于-3.5。渗透一定量的逆向思考问题,强调其可逆性与相互性,对培养学生推理证明的能力大有裨益。例如,在“互为补角”的定义教学中,可采用以下形式:∵∠A ∠B=180°,
∴∠A、∠B互为补角(正向思维)。∵∠A、∠B互为补角。∴∠A ∠B=180°(逆向思维)。当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时给学生以训练。
二、重视公式逆用的教学
公式从左到右及从右到左,这样的转换正是由正向思维转到逆向思维能力的体现。在教学中,注重这方面的训练,不仅能使学生思维活跃,拓宽思维,有益于学生思维能力的培养和提高。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在代数中公式的逆向应用比比皆是。多项式的乘法公式的逆用,用于因式分解、同底数幂的运算法则的逆用可轻而易举地帮助我们解答一些问题,如,若有关x的方程3x2-5x a=0的一个根在(-2,0)内,另一个在(1,3)内,则a的取值范围是不用解答呢?比如这类题目的解决思想是什么?
首先,逆向思维因为有两个根,所以判别式大于零。因为二次项系数大于0,开口向上。
令f(x)=3x2-5x a,则f(-2)>0,f(0)<0,f(1)<0,f(3)>0
解以上五个不等式得-12 用数形结合的方法,二元一次方程根的问题可以看作二次函数与x轴交点的问题。二次项系数a大于0,开口向上,由根的范围知二次函数与x轴的交点范围,模拟出图像。知道以上四个不等式。特别注意,别忘了判别式b2-4ac大于0这个条件。因为有两个根,这个条件必须成立。解题时容易漏掉这组题目,若正向思考,不但繁琐复杂,甚至解答不了,灵活逆用所学的幂的运算法则,则会出奇制胜。故逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。
三、多用逆向变式訓练,强化学生的逆向思维
逆向变式即在一定的条件下,将已知和求证进行转化,变成一种与原题目似曾相识的新题型。
再如,解方程,请判断方程x2-5x 6=0的根的情况。可变式为:已知关于x的方程x2-5x k=0,当k取何值时,方程有两个不相等的实数根。经常进行这些有针对性的逆向变式训练,创设问题情境,对逆向思维的形成起着很大的作用。
四、强调某些基本数学方法,促进逆向思维
数学的基本方法是教学的重点内容。其中的几个重要方法:如,逆推分析法、反证法等都可看作是培养学生逆向思维的主要途径。比如,在证明一道几何命题时(当然代数中也常用),教师常要求学生从所证的结论着手,通过观察图形,分析已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,由果索因,直指已知。
总之,培养学生的逆向思维能力,不仅对提高解题能力有益,更重要的是能够改善学生学习数学的思维方式,有助于形成良好的思维习惯,激发学生的创新开拓精神,培养良好的思维品性,提高学习效果、学习兴趣及提高思维能力和整体素质。
参考文献:
曹一鸣.中学数学课堂教学模式及其发展研究[M].北京师范大学出版社,2007.
(作者单位 广西壮族自治区南宁市第四十五中学)
编辑 鲁翠红
关键词:逆向思维;数学教学;数学思维
逆向思维是数学思维的一个重要形式,是创造性思维的一个组成部分,也是进行思维训练的载体,培养学生逆向思维过程是培养学生思维敏捷性的过程,拓展学生思维视野的过程。本人在多年教学实践中注重以下几个方面的尝试,获得了一定的成效。
一、在概念教学中注意培养反方向的思考与训练
数学概念、定义总是双向的,我们在平时的教学中,只秉承了从左到右的运用,于是形成了定向思维,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规的应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如,解|x 1| |x 2|>4这个不等式,解:在数轴上标出-1,-2这两个点。(并分为三个区域:即x小于等于-2,x大于-2且小于-1,x大于等于-1注意要做到不重不漏!)从绝对值概念的反向考虑其条件,所以(1)当x≤-2时,(x 1为负,所以取相反数,x 2也一样)。-(x 1)-(x 2)>4解得x<-3.5,又因为x≤-2(前提条件)所以x<-3.5。(2)当-2
∴∠A、∠B互为补角(正向思维)。∵∠A、∠B互为补角。∴∠A ∠B=180°(逆向思维)。当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时给学生以训练。
二、重视公式逆用的教学
公式从左到右及从右到左,这样的转换正是由正向思维转到逆向思维能力的体现。在教学中,注重这方面的训练,不仅能使学生思维活跃,拓宽思维,有益于学生思维能力的培养和提高。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在代数中公式的逆向应用比比皆是。多项式的乘法公式的逆用,用于因式分解、同底数幂的运算法则的逆用可轻而易举地帮助我们解答一些问题,如,若有关x的方程3x2-5x a=0的一个根在(-2,0)内,另一个在(1,3)内,则a的取值范围是不用解答呢?比如这类题目的解决思想是什么?
首先,逆向思维因为有两个根,所以判别式大于零。因为二次项系数大于0,开口向上。
令f(x)=3x2-5x a,则f(-2)>0,f(0)<0,f(1)<0,f(3)>0
解以上五个不等式得-12 用数形结合的方法,二元一次方程根的问题可以看作二次函数与x轴交点的问题。二次项系数a大于0,开口向上,由根的范围知二次函数与x轴的交点范围,模拟出图像。知道以上四个不等式。特别注意,别忘了判别式b2-4ac大于0这个条件。因为有两个根,这个条件必须成立。解题时容易漏掉这组题目,若正向思考,不但繁琐复杂,甚至解答不了,灵活逆用所学的幂的运算法则,则会出奇制胜。故逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。
三、多用逆向变式訓练,强化学生的逆向思维
逆向变式即在一定的条件下,将已知和求证进行转化,变成一种与原题目似曾相识的新题型。
再如,解方程,请判断方程x2-5x 6=0的根的情况。可变式为:已知关于x的方程x2-5x k=0,当k取何值时,方程有两个不相等的实数根。经常进行这些有针对性的逆向变式训练,创设问题情境,对逆向思维的形成起着很大的作用。
四、强调某些基本数学方法,促进逆向思维
数学的基本方法是教学的重点内容。其中的几个重要方法:如,逆推分析法、反证法等都可看作是培养学生逆向思维的主要途径。比如,在证明一道几何命题时(当然代数中也常用),教师常要求学生从所证的结论着手,通过观察图形,分析已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,由果索因,直指已知。
总之,培养学生的逆向思维能力,不仅对提高解题能力有益,更重要的是能够改善学生学习数学的思维方式,有助于形成良好的思维习惯,激发学生的创新开拓精神,培养良好的思维品性,提高学习效果、学习兴趣及提高思维能力和整体素质。
参考文献:
曹一鸣.中学数学课堂教学模式及其发展研究[M].北京师范大学出版社,2007.
(作者单位 广西壮族自治区南宁市第四十五中学)
编辑 鲁翠红