论文部分内容阅读
针对非线性目标跟踪中模型或函数近似等最优估计缺陷问题,提出了基于帧间预测和特征匹配的序列蒙特卡罗滤波跟踪算法。算法中采用在HSV色彩下的空间加权直方图描述跟踪车辆的状态特征,通过简单的随机漂移模型实现估测样本的帧间传递,利用估测样本与期望目标间的相似度量完成样本权重赋值运算,最终利用加权样本值估计实现待测目标的后验状态。实验结果表明,基于序列蒙特卡罗滤波的车辆跟踪算法计算简单有效,能够在复杂环境下实时、准确跟踪道路上无规律、非线性运动的车辆,并能够有效适应车辆部分遮挡和短时丢失等情况。