论文部分内容阅读
针对传统模糊C均值聚类方法对噪声敏感和过分依赖于初始聚类中心的缺点,提出基于SSCL的模糊C均值图像分类的自适应算法。该算法首先通过SSCL获得初始类别数和类别中心,然后作为模糊C均值聚类的输入,自动对图像进行分割,并对图像分割结果利用空间信息进行后处理。实验结果表明该方法较好地解决了FCM算法中的初始化和噪声敏感问题,具有较好的分类结果。