论文部分内容阅读
Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning’er M6.4 earthquake on June 3, 2007. In this paper, the aftershock sequence of the Ning’er M6.4 earthquake is relocated by using the double difference earthquake location method. The data is from the 5 mobile digital seismic stations and the permanent Simao seismic station. The results show that the length of the aftershock sequence is 40km and the width is 30km, concentrated obviously at the lateral displacement area between the Pu’er fault and the NNE-trending faults, with the majority occurring on the Pu’er fault around the main shock. The depths of aftershocks are from 2km to 12km, and the predominant distribution is in the depth of 8~10km. The mean depth is 7.9km. The seismic fault dips to the northwest revealed from the profile parallel to this aftershock sequence, which is identical to the dip of the secondary fault of the NE-trending Menglian-Mojiang fault in the earthquake area. There are more earthquakes concentrated in the northwest segment than in the southeast segment, which is perhaps related to the underground medium and faults. The depth profile of the earthquake sequence shows that the relocated earthquakes are mainly located near the Pu’er fault and the seismic faults dip to the southwest, consistent with the dip of the west branch of the Pu’er fault. In all, the fault strike revealed by earthquake relocations matches well with the strike in the focal mechanism solutions. The main shock is in the top of the aftershock sequence and the aftershocks are symmetrically distributed, showing that faulting was complete in both the NE and SW directions.
Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning’er M6.4 earthquake on June 3, 2007. In this paper, the aftershock sequence of the Ning’er M6 . 4 results is that the length of the aftershock sequence is 40 km and the width is 30 km, concentrated obviously at the lateral displacement area between the Pu’er fault and the NNE-trending faults, with the majority occurring on the Pu’er fault around the main shock. The depths of aftershocks are from 2km to 12km, and the predominant distribution is in the depth of 8 ~ 10km. The mean depth is 7.9km. The seismic fault dips to the northwest revealed from the profile parallel to this aftershock sequence, which is identical to the dip of the secondary fault of the NE-t rending Menglian-Mojiang fault in the earthquake area. There are more earthquakes concentrated in the northwest segment than in the southeast segment, which is perhaps related to the underground medium and faults. The depth profile of the earthquake sequence shows that the relocated earthquakes are mainly located near the Pu’er fault and the seismic faults dip to the southwest, consistent with the dip of the west branch of the Pu’er fault. In all, the fault strike revealed by earthquake relocations matches well with the strike in the focal mechanism solutions. The main shock is in the top of the aftershock sequence and the aftershocks are symmetrically distributed, showing that faulting was complete in both the NE and SW directions.