论文部分内容阅读
针对生物组学数据高维小样本的特点而引起的分类误差较大的问题,提出了一种带约束小生境二进制粒子群优化的集成特征选择方法。该方法利用二进制粒子群优化算法搜索分类准确率最高的特征子集,通过约束粒子编码的置位个数以限制选择特征个数,并加入多模优化中的小生境技术使算法能够一次获得多个差异度较大的特征子集,最后采用集成学习技术将基于多特征子集建立的基分类器集成为强分类器并对数据进行分类学习。实验结果表明,该特征选择方法在生物组学数据上能够稳定选择较少特征并获得较好分类性能。