论文部分内容阅读
文本的特征提取是文本分类过程中的一个重要环节,它的好坏将直接影响文本分类的准确率。该文介绍了词条的χ2统计方法(CHI)、词条与类别的互信息(MI)、信息增益(IG)、词条的期望交叉熵(CE)等文本特征提取方法,并对其取词策略进行了改进。为了对这些特征提取方法进行系统地比较,选择了三种代表性的分类器对《读卖新闻》文本数据库进行了分类实验。实验结果表明χ2统计方法具有最好的准确率,各种改进的特征提取方法都能提高文本分类的准确率。