基于小波分析的股指期货高频预测研究

来源 :系统工程理论与实践 | 被引量 : 0次 | 上传用户:
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于低频金融数据的预测,在时间上具有长期性,依赖于整体经济环境,不能形成短期内的准确预测.但是由于高频金融时间序列具有非线性、非平稳性以及其特有的日历效应等特性,传统的ARMA模型也无法得到满意的预测结果.本文提出基于小波多分辨率分析的预测方法,将收益率数据分为高频部分(周期性)与低频部分(趋势性),对拆分后的序列进行重构,并对重构后得到的数据分别建立ARMA模型.实证研究表明,小波多分辨率分析能很好地滤出日内效应,由于股指期货独特的市场特征,应将分解层数定为3,分解重构模型可以提高预测精度. The forecast based on low-frequency financial data is long-term in time and depends on the overall economic environment and can not form accurate forecasts in the short term. However, the characteristics of high-frequency financial time series are non-linear, non-stationary and their unique calendar effects , The traditional ARMA model can not get a satisfactory prediction result.This paper presents a prediction method based on wavelet multi-resolution analysis, the data is divided into high frequency part (periodic) and low frequency part (trend), after the split ARMA model is established respectively for the reconstructed data.Experimental results show that the wavelet multiresolution analysis can filter out the intraday effect very well.Due to the unique market characteristics of stock index futures, As 3, decomposition and reconstruction model can improve the prediction accuracy.
其他文献
期刊
小学是对学生进行学习启蒙的关键时期,数学则是小学阶段的一门基础性和重点课程,近年来随着国家新课程改革在义务教育阶段的不断深入推进,传统的小学数学课堂教学模式已经无