论文部分内容阅读
针对复杂场景下远程视频监控图像异常检测困难、传统算法功能单一(仅针对某种特定场景或某种异常图像进行检测)等问题,提出一种基于深度学习的全自动远程视频异常图像检测方法。首先采用Xavier方法对自行设计的卷积神经网络(Convolutional Neural Network,CNN)的参数进行初始化,然后将标准化后的视频差分图送入CNN的输入层,通过特征提取及下采样,最后在CNN的输出层获得远程视频异常图像检测结果。实验结果表明,该方法可以对远程视频监控中突然出现遮挡、模糊和场景切换等多种异常同时进行