论文部分内容阅读
【摘要】本文基于应用型人才培养的目标,结合数值计算的思想,探讨如何把线性代数严谨而抽象的理论内容与其广泛使用的工具性方法完美地结合.
【关键词】线性代数;数值计算;理论应用
随着计算机技术和网络技术的飞速发展,如何培养21世纪的创新性人才,如何培养既具有一定理论分析能力,又具有实践创新能力的应用型大学生,是我们工科数学课程的教学内容改革和教学方式改革都必须面对的问题.随着科学技术的发展,我们研究的问题越来越复杂,出现的变量成千上万,向量之间有的是线性关系,当然也大量存在非线性问题,而对于非线性问题,我们主要用“以直代曲”的思想将其线性化,从而转化为线性问题的求解.所以,大规模的线性问题的求解就成为热点问题.在这样一个“应用需求”的推动下,结合计算机的技术推动,线性代数的应用和发展前景前所未有的广阔.
线性代数这门课程的特点是高度的概括性、高度的抽象性及较强的逻辑性,最早是针对理科,特别是数学系开设的,然而基于它广泛的应用,它已经成为各工科专业的必修课,甚至有些社会科学专业也开设了这门课程.然而,其数学烙印已经深扎其中,无法适应工科学生的需求.大部分工科学生望而生畏,内容的抽象性让他们望而却步,大量的计算又让他们晕头转向,学习过程中产生迷茫,学完之后收获很少,甚至打击他们继续学习数学知识的积极性.所以,教学内容必须改革!1990年开始,美国对线性代数教学做了一次大的改革,探究了线性代数如何满足数学专业和非数学专业学生不同的要求,从而使线性代数教育得到更好的发展[1].对于工科学生,在内容设置上更应强调应用,激发学生学习兴趣,提高学习能力,加强应用知识解决实际问题的能力.另一方面,信息技术的飞速发展及计算机的广泛应用为大学理工科数学教学模式提出了新的改革思路.數学软件如Mathematica和MATLAB已经渗透到数学教学中,线性代数的实验教学方式探索也取得了很大进步,有很多教材特别是适用于经济管理类的教材介绍了一些常用的数学命令[2].
如何把线性代数严谨而抽象的理论内容与其广泛使用的工具性方法完美地结合,使得学生一方面受到严格的理论熏陶,体会严谨的数理逻辑的魅力,同时又熟练掌握其主要的计算方法,为后续的课程学习与科学研究打下数学基础,一直是广大数学工作者与教育家不懈追求的目标.下面结合本人多年教学经验,谈谈在某些知识点的设置和讲解上,如何结合实际问题,体现出知识点的应用价值.
【关键词】线性代数;数值计算;理论应用
随着计算机技术和网络技术的飞速发展,如何培养21世纪的创新性人才,如何培养既具有一定理论分析能力,又具有实践创新能力的应用型大学生,是我们工科数学课程的教学内容改革和教学方式改革都必须面对的问题.随着科学技术的发展,我们研究的问题越来越复杂,出现的变量成千上万,向量之间有的是线性关系,当然也大量存在非线性问题,而对于非线性问题,我们主要用“以直代曲”的思想将其线性化,从而转化为线性问题的求解.所以,大规模的线性问题的求解就成为热点问题.在这样一个“应用需求”的推动下,结合计算机的技术推动,线性代数的应用和发展前景前所未有的广阔.
线性代数这门课程的特点是高度的概括性、高度的抽象性及较强的逻辑性,最早是针对理科,特别是数学系开设的,然而基于它广泛的应用,它已经成为各工科专业的必修课,甚至有些社会科学专业也开设了这门课程.然而,其数学烙印已经深扎其中,无法适应工科学生的需求.大部分工科学生望而生畏,内容的抽象性让他们望而却步,大量的计算又让他们晕头转向,学习过程中产生迷茫,学完之后收获很少,甚至打击他们继续学习数学知识的积极性.所以,教学内容必须改革!1990年开始,美国对线性代数教学做了一次大的改革,探究了线性代数如何满足数学专业和非数学专业学生不同的要求,从而使线性代数教育得到更好的发展[1].对于工科学生,在内容设置上更应强调应用,激发学生学习兴趣,提高学习能力,加强应用知识解决实际问题的能力.另一方面,信息技术的飞速发展及计算机的广泛应用为大学理工科数学教学模式提出了新的改革思路.數学软件如Mathematica和MATLAB已经渗透到数学教学中,线性代数的实验教学方式探索也取得了很大进步,有很多教材特别是适用于经济管理类的教材介绍了一些常用的数学命令[2].
如何把线性代数严谨而抽象的理论内容与其广泛使用的工具性方法完美地结合,使得学生一方面受到严格的理论熏陶,体会严谨的数理逻辑的魅力,同时又熟练掌握其主要的计算方法,为后续的课程学习与科学研究打下数学基础,一直是广大数学工作者与教育家不懈追求的目标.下面结合本人多年教学经验,谈谈在某些知识点的设置和讲解上,如何结合实际问题,体现出知识点的应用价值.