论文部分内容阅读
在异质信息网络中,异质节点对象之间具有多元关系,形成异质重边信息网络.知识图谱表示旨在将实体和关系在低维的向量空间进行嵌入,可以用来学习异质重边信息网络中实体间的多元关系.首先通过注意力机制对异质重边信息网络中的多元关系进行融合表示,进而将异质节点的类型信息进行多元关系融合空间的映射,在多元关系融合空间上提出基于翻译的异质重边嵌入模型,用以学习异质节点之间的链路关系.最后,在MovieLens100k电影数据集上进行了异质节点多元关系的链路预测实验.实验结果表明,在异质重边信息网络中,基于改进的翻译模型在