论文部分内容阅读
设m和n是偶数(m,n≥4),给出了3个色等价类{{W(n+1)W(m=1)},{K3}},{{W(n+2),W(m+1),K3},{K3,K2}},{{W(n+1),W(m+1),K3,K2},{K3,K2,K1}}的基本特征,分析了它们之间的关系.最后给出了广义树的色多项式P(G)=λ(λ-1)(λ-q3)…(λ-qn),(1≤qi≤i-1,i=3,4,…,n).这些结果在证明上述3个色等价类是完全类时是有用的.