散斑全息存储中的散斑尺寸优化

来源 :光子学报 | 被引量 : 0次 | 上传用户:RedLenov
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文分别给出散斑全息存储中复用选择性和读出衍射效率与散斑尺寸的关系,依此定义了一个用于优化散斑尺寸的判据参数并进行优化计算.在均衡散斑尺寸对复用选择性和存储介质动态范围的不同影响下,散斑存储应选取适当的大小以获得高密度存储.
其他文献
该文结合掌纹图像的纹理特点,对原始韦伯局部描述子(WLD)中的差分激励和梯度方向进行改进,提出双Gabor方向韦伯局部描述子(DGWLD),以提高掌纹识别率。在构建新的差分激励图时,通过加入邻域像素点与中心像素点间灰度差分的方向信息,扩大异类掌纹间的差异。同时,采用双Gabor方向代替原始的梯度方向,减小平移和旋转对识别的影响。此外,为了更好地衡量特征间的相似度,使用交叉匹配算法,进一步提升识别率
该文针对压缩跟踪算法无法适应目标尺度的变化以及没有考虑样本权重的问题,提出一种基于粒子滤波与样本加权的压缩跟踪算法。首先,对压缩特征进行改进,提取归一化矩形特征用于构建目标表观模型。然后,引入样本加权的思想,根据正样本与目标之间距离的不同赋予正样本不同的权重,提高分类器的分类精度。最后,在粒子滤波的框架下融合尺度不变压缩特征进行动态状态估计,在粒子预测阶段利用2阶自回归模型对粒子状态进行估计与预测
传统截面投影Otsu法后处理过程中的阈值Q为预先设定的常量,对含噪程度不同的图像普适性较差。该文提出一种基于记忆分子动理论优化算法的多目标截面投影Otsu法。该方法将阈值Q作为变量,结合分割阈值T,基于最大类间方差和最大峰值信噪比准则建立多目标图像分割模型,以兼顾图像分割的准确性和抗噪性;为免阈值增加而影响算法效率,将人工记忆原理引入分子动理论优化算法,设计了一种基于记忆分子动理论优化算法的多目标