论文部分内容阅读
研究了自相似分形的Hausdorf测度的上界估计问题,得到以下结果:设S是Sierpinski垫,s=log23是S的Hausdorf维数,对任一x,0<x<12,将x表为x=12i1+12i2+…,i1<i2<…,i1,i2,…∈N.则S的Hausdorf测度Hs(S)满足Hs(S)≤11-32∞j=12j3ij(1-x)s.取x=123+(124+126+…+122k+…),k=2,3,….则得到Hs(S)<0.8701.记H(x)=11-32∞j=12j3ij(1-x)s则inf0<x<12{H