论文部分内容阅读
为了能在大数据中准确快速地寻找到网络结构.该文提出一种基于社区极大类的大数据聚类算法。对于初始节点不确定和适应度函数计算所带来的时间消耗,引入局部关键节点和对适应度公式进行改进来减少时间消耗。对于初始社区的形成。引入了极大团的概念并通过分析极大团的特性。得出社区的核心类别是由极大团构成,同时提出通过极大团的发现来得到局部核心类别的方法并提出了极大团发现算法的并行策略。然后提出整个算法的并行策略并在真实数据集上实验。实验结果证明该文提出的算法是可行和有效的,适用于大规模数据的网络结构发现。