论文部分内容阅读
利用计算机视觉技术和机器学习技术对学生课堂行为进行自动识别,是过程性评价的一种新方法,近年来逐渐引起了研究者的关注。文章以监控设备拍摄的实际课堂教学视频为数据源,采集、标注了学生课堂行为数据,提取了学生的人体骨架信息。在此基础上,文章采用Boosting算法和卷积神经网络算法,对基于这两类不同机器学习算法的5种模型进行了学生课堂行为自动识别准确率实验。实验结果表明,在学校教室这种识别比较困难的场景,基于人体骨架信息提取的学生课堂行为自动识别可以达到较高的精度,其中基于Boosting算法的XGBoo