论文部分内容阅读
空间聚类分析是空间数据挖掘中的一个重要研究课题。传统聚类算法忽略了真实世界中许多约束条件的存在,而约束条件的存在会影响聚类结果的合理性。讨论了带障碍约束的空间聚类问题,研究了一种基于遗传和划分相结合的带障碍约束空间数据聚类分析方法,设计了一个带障碍约束的遗传K中心空间聚类分析算法。对比实验表明,该方法兼顾了局部收敛和全局收敛性能,考虑到了现实障碍物对聚类结果的影响,使得聚类结果更具有实际意义,其结果优于传统K中心聚类及单纯的遗传聚类,不足之处是其计算速度相对较慢。