论文部分内容阅读
智能电网用户行为特征的分析在电力营销策略中扮演者重要的角色。文中结合KL变换和KL散度的方法,提取与分类用电数据信息的特征,实现不同类型的用电数据划分。同时通过综合分析所有用户的日负荷曲线,提取不同类型用户的典型日负荷曲线。研究结果表明:基于KL变换的方法,通过对原始数据的压缩和主要特征的保留,大大降低了智能电网数据提取与分类的计算量,提高了时间效率;基于KL散度的方法,通过对k-means算法中的k值和初始聚类中心的选择进行优化,提高了聚类效果的准确率;实例中电网用户正常数据为38组,可分为3类典型用户