论文部分内容阅读
番茄叶病种类多、成因复杂,其预防和识别难度较大。传统基于机器学习的方法多靠人工识别,需要一定的专家经验,且具有主观性强、识别准确率不高等缺点。为实现番茄叶病特征的自动提取,并提高识别准确率,提出一种基于深度学习的番茄叶病识别模型。该模型基于卷积神经网络对番茄叶部病害特征进行自动提取,获得高维特征后,采用PCA降维算法去除冗余特征;从增大类间距离并减小类内距离的角度改进了softmax分类器,提高了识别准确率。将该模型在CrowdAI提供的数据集上进行了仿真验证,结果表明,该模型能够对番茄叶部常见10