Adaptive Control of Discrete-time Nonlinear Systems Using ITF-ORVFL

来源 :自动化学报(英文版) | 被引量 : 0次 | 上传用户:yingxiong324
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Random vector functional ink (RVFL) networks belong to a class of single hidden layer neural networks in which some parameters are randomly selected. Their network structure in which contains the direct links between inputs and outputs is unique, and stability analysis and real-time performance are two difficulties of the control systems based on neural networks. In this paper, combining the advantages of RVFL and the ideas of online sequential extreme learning machine (OS-ELM) and initial-training-free online extreme learning machine (ITF-OELM), a novel online learning algorithm which is named as initial-training-free online random vector functional link algo rithm (ITF-ORVFL) is investigated for training RVFL. The link vector of RVFL network can be analytically determined based on sequentially arriving data by ITF-ORVFL with a high learning speed, and the stability for nonlinear systems based on this learning algorithm is analyzed. The experiment results indicate that the proposed ITF-ORVFL is effective in coping with nonparametric uncertainty.
其他文献
Satellite swarm coordinated flight (SSCF) technology has promising applications, but its complex nature poses significant challenges for control implementation. In response, this paper proposes an easily solvable adaptive control scheme to achieve high-pe
A large amount of research has shown the vitality of siphon enumeration in the analysis and control of deadlocks in various resource-allocation systems modeled by Petri nets (PNs). In this paper, we propose an algorithm for the enumeration of minimal siph
Visual localization is a crucial component in the application of mobile robot and autonomous driving. Image retrieval is an efficient and effective technique in image-based localization methods. Due to the drastic variability of environmental conditions,
Localization of sensor nodes in the internet of underwater things (IoUT) is of considerable significance due to its various applications, such as navigation, data tagging, and detection of underwater objects. Therefore, in this paper, we propose a hybrid
In daily life, people use their hands in various ways for most daily activities. There are many applications based on the position, direction, and joints of the hand, including gesture recognition, gesture prediction, robotics and so on. This paper propos
This paper studies the fully distributed formation control problem of multi-robot systems without global position measurements subject to unknown longitudinal slippage constraints. It is difficult for robots to obtain accurate and stable global position i
The asymmetric input-constrained optimal synch-ronization problem of heterogeneous unknown nonlinear multiagent systems (MASs) is considered in the paper. Intuitively, a state-space transformation is performed such that satisfaction of symmetric input con
The speed regulation problem with only speed measurement is investigated in this paper for a permanent magnet direct current (DC) motor driven by a buck converter. By lumping all unknown matched/unmatched disturbances and uncertainties together, the tradi
In this paper, a new recursive least squares (RLS) identification algorithm with variable-direction forgetting (VDF) is proposed for multi-output systems. The objective is to enhance parameter estimation performance under non-persistent excitation. The pr
A large-scale dynamically weighted directed network (DWDN) involving numerous entities and massive dynamic interaction is an essential data source in many big-data-related applications, like in a terminal interaction pattern analysis system (TIPAS). It ca