论文部分内容阅读
An optimization design for the cylindrical non-contact piezoelectric actuator is presented after analyzing the acoustic radiation pressure and acoustic viscous force.By adding the specific microstructure on the rotor to alter the near-field sound effect and maximize the use of high intensity acoustic field induced by the stator to drive the rotor,the rotor speed is increased.The finite element analysis of the acoustic field induced by a variety of rotors with different structures is conducted,A prototype is manufactured,the speed-test system for the actuator is built,and the driving characteristics are measured.The results suggest that the rotation speed of the rotor can reach 4 167r/min,which demonstrates that the driving characteristics of cylindrical non-contact piezoelectric actuator are successfully improved using the optimization method proposed.
An optimization design for the cylindrical non-contact piezoelectric actuator is presented after analyzing the acoustic radiation pressure and acoustic viscous force.By adding the specific microstructure on the rotor to alter the near-field sound effect and maximize the use of high intensity acoustic field induced by the stator to drive the rotor, the rotor speed is increased. The finite element analysis of the acoustic field induced by a variety of rotors with different structures is conducted, A prototype is manufactured, the speed-test system for the actuator is built, and the driving characteristics are measured that results suggest that the rotation speed of the rotor can reach 4 167r / min, which demonstrates that the driving characteristics of cylindrical non-contact piezoelectric actuator are successfully improved using the optimization method proposed.