论文部分内容阅读
针对训练样本较少情况下的人脸识别问题,该文提出基于生成视图和支持向量机的识别方法.在人脸识别的实际应用中,处理的人脸图像,每类往往只有很少的样本,以至于不能充分表达样本的实际分布,需要对训练样本的数据进行有效地扩充.为此首先通过对人脸图像中眼睛中心位置的扰动,利用面像模板,自动生成该人脸的多个虚拟人脸图像,并与原图像一起形成第一层的人脸库,然后应用 Eigenface方法得到人脸的特征数据,按照每个类的样本数据分布,应用内插法和外推法进行第二层次的扩充.在 ICT YCNC和 UMIST人脸库中应用