论文部分内容阅读
This paper presents a synthesis process for preparing mesoporous titanium dioxide materials in the absence of any templates and using inorganic acids as catalysts. Tetrabutyl titanate was used as the precursor at ambient temperature, and four different inorganic acids, i.e., hydrochloric, nitric, sulfuric and phosphoric, were used as catalysts. The as-prepared mesoporous TiO2 materials were characterized by SEM, XRD and nitrogen adsorption/desorption measurements. The influences of different inorganic acids on the properties of TiO2 were discussed and compared in details. Experiments showed that the inorganic acids have significant effects on the surface area, pore volume, pore size, and pore size distribution of the products. The mesoporous TiO2 materials catalyzed by phosphoric acid exhibited the largest specific surface area and largest pore volume with narrow pore size distribution. Vacuum and infrared drying methods tested in the process were found to have subtle impact on the structure of the TiO2 materials prepared.
This paper presents a synthesis process for preparing mesoporous titanium dioxide materials in the absence of any templates and using inorganic acids as catalysts. Tetrabutyl titanate was used as the precursor at ambient temperature, and four different inorganic acids, ie, hydrochloric, nitric, sulfuric and The as-prepared mesoporous TiO2 materials were characterized by SEM, XRD and nitrogen adsorption / desorption measurements. The influences of different inorganic acids on the properties of TiO2 were discussed and compared in details. Experiments showed that the inorganic acids have significant effects on the surface area, pore volume, pore size, and pore size distribution of the products. The mesoporous TiO2 materials catalyzed by phosphoric acid exhibited the largest specific surface area and largest pore volume with narrow pore size distribution. drying methods tested in the process were found to have subtle impact on the str ucture of the TiO2 materials prepared.