论文部分内容阅读
将稀疏编码理论应用于入侵检测,并提出一种将稀疏编码理论和多类支持向量机结合的入侵检测算法。稀疏性约束同时引入到过完备词典学习和编码过程,不仅促使训练和测试过程的一致性,而且使得映射的稀疏系数在保持一定重构残差的前提下更富有判别力,并将学习到的系数作为特征送入到支持向量机进行入侵检测。实验结果表明,稀疏性具有一定的去噪能力,并使得学习的特征更富有判别力,实验验证了该方法能保证较高的检测率和较低的误报率,表现出更好的分类性能。