【摘 要】
:
核聚变堆材料在高能粒子辐照过程中会产生大量点缺陷,导致辐照脆性和辐照肿胀等现象.因而,研究点缺陷在辐照过程中的演变过程至关重要.点缺陷团簇的一维迁移现象是这种演变过程的主要研究内容之一.本文采用普通低压(200 kV)透射电镜,在室温条件下对注氢纯铝中的间隙型位错环在电子辐照下的一维迁移现象进行了观察和分析.在200 keV电子辐照下,注氢纯铝中的位错环可多个、同时发生一维迁移运动,也可单个、独立进行一维迁移运动.位错环沿柏氏矢量1/3(111)的方向可进行微米尺度的一维长程迁移,沿柏氏矢量1/2(110
【机 构】
:
北京科技大学材料科学与工程学院,北京 100083;合肥工业大学材料科学与工程学院,合肥 230009;九州大学应用力学研究所,福冈 8168580
论文部分内容阅读
核聚变堆材料在高能粒子辐照过程中会产生大量点缺陷,导致辐照脆性和辐照肿胀等现象.因而,研究点缺陷在辐照过程中的演变过程至关重要.点缺陷团簇的一维迁移现象是这种演变过程的主要研究内容之一.本文采用普通低压(200 kV)透射电镜,在室温条件下对注氢纯铝中的间隙型位错环在电子辐照下的一维迁移现象进行了观察和分析.在200 keV电子辐照下,注氢纯铝中的位错环可多个、同时发生一维迁移运动,也可单个、独立进行一维迁移运动.位错环沿柏氏矢量1/3(111)的方向可进行微米尺度的一维长程迁移,沿柏氏矢量1/2(110)的方向一维迁移也可达数百纳米.电子束辐照时产生的间隙原子浓度梯度是引起位错环一维迁移并决定其迁移方向的原因.位错环发生快速一维迁移时,其后会留下一条运动轨迹;位错环一维迁移的速率越快,运动的轨迹则越长,在完成迁移过后的几十秒内这些运动轨迹会逐渐消失.
其他文献
构建核壳结构可有效降低材料的表面缺陷及实现掺杂离子的可控区域分布,已成为目前增强及调控材料发光特性的有效手段之一.为此,本文以外延生长技术,构建了一系列NaLnF4(Ln=Y,Yb,Ho)@NaLnF4(Ln=Y,Yb)核壳微米结构,并实现了Ho3+离子上转换发光的增强及可控调节.借助共聚焦显微光谱测试系统,在980 nm近红外激光激发下,研究Ho3+离子在不同单颗粒核壳结构中的上转换发光特性.结果表明,当包覆NaYF4惰性壳时,NaYF4:Yb3+/Ho3+及NaYbF4:Ho3+微米棒的上转换发射强度
为研究圆柱曲面的单光子量子雷达散射截面与经典雷达散射截面相比存在的具体优势,引入光子波函数,将引起量子干涉的距离矢量进行分解,通过圆柱曲面的曲面积分推导得到了单基地单光子下的圆柱曲面量子雷达散射截面的封闭表达式.分析了不同电尺寸的圆柱曲面长度和曲率半径的影响,对比了圆柱曲面量子雷达散射截面与经典雷达散射截面的封闭表达式.封闭表达式的分析和仿真结果都表明,圆柱曲面长度的电尺寸决定量子雷达散射截面的旁瓣数,曲率半径的电尺寸决定了量子雷达散射截面曲线的包络,量子雷达散射截面的整体强度与曲率半径的电尺寸呈线性关系
为了研究离子推力器输入参数对工作性能的影响,采用试验研究和理论分析的方法研究了离子推力器加速电压和阳极流率对离子推力器性能的影响.研究结果表明:一定范围内离子束流随着加速电压绝对值的减小不断减小,然后突然增大,大、小推力模式下的电子返流极限电压分别为-140 V和-115 V,放电电压、放电损耗随阳极流率减小单调增大,减速电流单调减小,通过调节阳极电流、栅间电压、工质气体流量,功率为300-4850 W下,推力为11-188 mN,比冲为1800-3567 s,效率为34%-67%,在3000 W时推力器
石墨烯和纳米颗粒的复合材料具有新颖的光学和电学特性,被广泛应用于信息传感、光电转换、医学诊断等领域,具有十分广阔的发展前景.虽然石墨烯拥有优异的光电性能,可以实现对随机激光性质的调控,但目前实现特殊结构的石墨烯与金属纳米结构的复合过程复杂繁琐,利用石墨烯有效降低随机激光阈值仍存在挑战.本文利用便捷的化学还原及吸附法制备Au/石墨烯结构,以染料DCJTB为增益介质,使用旋涂法制备了均匀的薄膜样品;研究对比Au纳米颗粒和Au/石墨烯结构随机激光特性,分析了石墨烯的作用机理.研究结果表明,Au/石墨烯复合材料透
利用超构表面优异的波前调控能力将片上光子集成电路对光场的操控拓展至自由空间是当前一项重要课题.本文采用传输相位方法设计了一种基于波导模式激发的内嵌式超构表面,其相位分布同时满足导模的基频以及二倍频的聚焦.在此基础上,将内嵌式材料限定为相变材料,结合其在不同相态时的折射率差异,通过仿真手段实现了两种相态下分别针对于基波和二次谐波的聚焦.在基波(或二次谐波)实现高质量聚焦时,焦点处二次谐波(或基波)的成分得到了很大程度上的抑制,更有利于后续完全滤波.进一步地,通过在波导层底面嵌入与顶面完全相同的超构表面,并横
水中流光放电是研究水中放电基本物理、化学过程的主要研究对象.本文利用四分幅超高速相机、采用针-板电极结构、在20-800 μS/cm水电导率范围内研究了水中微秒脉冲流光放电流光丝的再发光和暂停行为,探讨了高水电导率下观测不到流光丝的再发光的原因.结果发现:再发光在不同的流光丝之间交替发生并存在两种模式:一种为整根丝熄灭后再发光;一种为只有先端部分发光熄灭随后恢复发光.随着水电导率的增大,观测到流光丝的再发光现象的频度急剧减小,540 μS/cm水电导率时降到零;在20-800 μS/cm 水电导率条件下都
通过引入具有类电磁诱导透明效应的超材料,非对称光子晶体谐振腔的透射特性得到了极大的优化,包括透射峰的品质因子和谐振腔模所对应的电磁场强度.品质因子的提高与非对称场强局域的增强有利于高性能电磁二极管的实现.我们在引入非线性材料的微带波导系统中验证了该方案.实验结果显示,此二极管在1.329 GHz的工作频率下可产生高达19.7 dB的透射对比度,同时输入功率强度仅为7 dBm.此外,我们提出的方案并没有大幅增加器件体积和剧烈降低信号透过率.这些特性的亚波长尺度实现将有益于集成光学回路的小型化.
层裂强度表征了材料内部最大动态抗拉能力,并与材料本身的力学性质以及损伤早期演化相关.建立层裂强度计算的解析表达式,深入认识层裂强度所包含的微细观物理涵义,有利于更好地优化延性金属材料的层裂强度.目前大量的实验表明:延性金属材料的层裂强度对加载拉伸应变率、温度效应以及材料初始微细观结构具有很强的依赖关系.本文基于对孔洞成核与增长的损伤早期演化特性的分析,以及对温度效应和晶粒尺寸与材料本身力学性质之间关系的分析,给出了简单、实用的层裂强度的解析物理模型,物理模型的计算结果与典型延性金属高纯铝、铜和钽的层裂强度
基于包含驱动和阻尼的三波非线性相互作用模型,构建了一个描述高能量粒子测地声模(EGAM)与Dimits区漂移波湍流相互作用的系统,并在系统的线性增长及非线性振荡阶段分别进行了解析和数值研究.更进一步的数值结果表明,在忽略EGAM的贡献时,该系统具有随着线性驱动/阻尼率等参数的变化,从极限环振荡经历倍周期分岔最终进入混沌的行为特征.在此基础上,形式上构建了本系统的非线性饱和Dimits区,并研究了 EGAM对Dimits区漂移波的影响.结果表明,对于不同幅度和频率的EGAM,被调制后的漂移波将表现出受到激发
采用分子动力学方法对Ti3Al合金的形核机理进行了模拟研究,采用团簇类型指数法(CTIM),对凝固过程不同尺度的原子团簇结构进行了识别和表征,深入研究了临界晶核的形成和长大过程.结果表明,凝固过程体系包含了数万种不同类型的原子团簇结构,但其中22种团簇结构类型对结晶形核过程起关键性作用.在晶核的形成和长大过程,类二十面体(ICO)原子团簇、类BCC原子团簇和缺陷FCC及缺陷HCP原子团簇在3个特征温度点T1(1110 K),T2(1085 K)和T3(1010 K)时达到数量上的饱和,并根据数量和空间分布