论文部分内容阅读
兴趣点(POI)的签到数据体现了用户的偏好和兴趣点的分布特征,这在兴趣点推荐领域有极为重要的价值.为了缓解数据稀疏造成的推荐不准确等问题,本文提出了融合时间序列的POI动态推荐算法,结合用户与用户之间的关系、兴趣点位置以及流行度信息等.首先划分时间序列,得到时间因子的相似度;其次时间序列融入到基于用户的协同过滤算法,再根据时间的连续性特征得到基于用户的预测评分,然后将地理影响因子与基于时间的流行度信息结合,预测用户的评分,进而与基于用户的评分加权融合;最后,在Gowalla数据集上进行实验,结果表明