基于维正弦惯性权重和t变异的PSO算法

来源 :计算机与现代化 | 被引量 : 0次 | 上传用户:skyeyviva
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对高维优化问题,随机初始化的粒子群算法中不同维的收敛情况不同,常用惯性权重不能很好地平衡全局搜索和局部搜索,且算法也易陷入局部最优。本文提出一种基于惯性权重维正弦调整和t分布维变异的粒子群优化算法,兼顾各维的收敛情况,较好地保持了种群的多样性。通过4个典型函数的测试,结果表明改进算法提高了收敛速度和精度。
其他文献
对工业生产线上规程化操作动作进行手势跟踪与动作识别研究。首先选取YCbCr颜色模型进行手部区域识别,获得完整手部区域;然后利用Euclidean距离变换计算相邻2个手部运动轨迹点之间的距离和各帧图像的手部运动速度;再利用扩展有限状态机模型实现手部运动的分割,将分割的多个动作与建立的动作模板匹配,利用Hausdorff距离匹配法判断匹配结果的准确性,实现手部动作的识别。实验结果表明:该手部动作识别算
资源调度作为云资源管理的一个重要手段,直接关系到云计算的整体稳定性和整体效果。由于用户众多并且需求的多样性,导致云计算环境中任务调度的复杂和困难;如果调度算法不好,结果