论文部分内容阅读
考虑到乳腺微钙化簇样本分布不平衡以及特征的多样性,提出了基于K均值聚类的多核支持向量机。即首先将训练样本聚合成K类,对每类样本加不同的惩罚因子,以平衡样本分布不平衡。其次针对样本特征多样性,将核函数做组合,得到多核支持向量分类器。使用主动反馈学习的方法来得到稳定的训练样本。实验结果表明,本方法与单核SVM及多核SVM相比,检对率至少可以提高两个百分点。