论文部分内容阅读
本文提出了用双曲函数(α=1/A+BN)来局部拟合疲劳裂纹扩展速率中的α-N关系,然后对此关系求导,得出相应于每一(α_i,N_i)的(dα/dN)_i值。这种方法可化为1/α与N的线性回归,计算简单,不需要编程,在能进行线性回归的计算器上即可完成。并将此法与“二次多项式法”进行了比较,二者具有相同的结果,证明了可以用“双曲函数局部拟合怯”来处理疲劳裂纹扩展速率试验数据。
This paper presents the local fitting of the α-N relationship in the fatigue crack growth rate with a hyperbolic function (α = 1 / A + BN), and then derives the relationship between the α-N and α (dα / dN) _i value. This method can be turned into 1 / α and N linear regression, the calculation is simple, does not require programming, can be carried out on a linear regression calculator. This method is compared with “quadratic polynomial method ”. Both of them have the same result, which proves that the experimental data of fatigue crack growth rate can be processed by “hyperbolic function local fitting ”.