论文部分内容阅读
软测量技术在化工生产过程中具有较好的应用前景,适合于监测测量成本高、难于或无法实际测量的过程变量。将改进的T-S模糊神经网络模型引入到软测量建模中,通过偏差校正网络对系统输出量进行动态补偿,可比传统T-S模糊神经网络模型获得更好的系统辨识效果,通过实际测试,软测量结果的均方误差可降低约70%左右。改进的T-S模糊神经网络中由于增加了偏差补偿系统,因此软测量精度获得提高。