论文部分内容阅读
1 已知两点P_1(-2, -2)、P_2(2,0),(1)在直线p_1p_2上找一点p,使|pp_1|为|p_1p_2|的1/4(2)在p_1p_2的延长线上找一点Q,使得有|P_2Q|:|p_1Q|=1:2 2 已知平行四边形ABCD中,三顶点坐标分别是(-2,-1)、(0,2)、(2,-1),求第四顶点坐标。 3 已知直角三角形ABC,斜边BC两端点坐标为B(m,a)、C(m,b),求此三角重心的轨迹。 4 试求到两坐标轴距离之差恒为2的点的轨迹方程,并作出轨迹图形。
1 Knowing two points P_1(-2, -2), P_2(2,0),(1) Find a point p on the line p_1p_2 so that |pp_1| is 1/4(2) of p_1p_2| at p_1p_2 Extend the line to find a point Q, so that |P_2Q|:|p_1Q|=1:2 2 In the known parallelogram ABCD, the coordinates of the three vertices are (-2,-1), (0,2), (2, -1), find the fourth vertex coordinates. 3 Known A right-angled triangle ABC, the coordinates of the two sides of the oblique side BC are B (m, a), C (m, b), and find the trajectory of the center of gravity of the triangle. 4 Find the trajectory equation of the point where the difference between the two coordinate axes is constant at 2, and make the trajectory figure.