论文部分内容阅读
法国数学家韦达最早发现代数方程的根与系数之间有以下关系:如果一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,那么x1+x2=-ab,x1·x2=ac.反过来,如果x1,x2满足x1+x2=p,x1·x2=q,则x1,x2是一元二次方程x2+px+q=0的两个根.因此,人们把这个关系称为韦达定理.一元二次方程的韦达定理,揭示了根与系数的一种必然联系.利用这个关系,我
Weida, the French mathematician, first discovered the following relations between roots and coefficients of an algebraic equation: If the two quadratic equations ax2 + bx + c = 0 (a ≠ 0) are x1, x2 then x1 + x2 = ab, x1 · x2 = ac. Conversely, if x1, x2 satisfy x1 + x2 = p, x1 · x2 = q, x1, x2 are two roots of the quadratic equation x2 + px + q = 0. Therefore , We refer to this relation as the Vedic theorem. The Vedic theorem of the quadratic equation reveals the necessary relationship between the root and the coefficient. Using this relationship, I