论文部分内容阅读
基于边界最大化的特征选择方法是一种有效的特征选择方法,它能够显著去除高维数据中的不相干特征,在机器学习中有着重要的应用。但该方法存在着计算复杂度较大的问题,为了克服这一问题,提出了基于类心和特征加权的特征选择算法。其基本思想是以某一类的类心为中心,寻找其同类和异类最近邻构成边界,根据某种准则获得一个特征空间的权重,使得权重特征空间中的边界最大。在4个UCI数据库上的实验验证了所提算法不仅有更高的效率而且有更好的分类准确度,并且对于不相干特征几乎是不敏感的。