论文部分内容阅读
针对复杂果园环境中行人难以精确检测并定位的问题,提出了一种双目相机结合改进YOLOv3目标检测算法的行人障碍物检测和定位方法。该方法采用ZED双目相机采集左右视图,通过视差原理获取图像像素点的距离信息;将双目相机一侧的RGB图像作为用树形特征融合模块改进的YOLOv3算法的输入,得到行人障碍物在图像中的位置信息,结合双目相机获得的像素位置信息计算出相对于相机的三维坐标。用卡耐基梅隆大学国家机器人工程中心开放的果园行人检测数据集测试改进的YOLOv3算法,结果表明,准确率和召回率分别达到95.34%和