论文部分内容阅读
Gold nanoparticles (AuNPs) assembled with fluorescent peptides through Au-S bonds (pep-AuNPs) have been widely used in biomolecular detection.However,due to the endo/lysosomal trapping after the nanoprobes enter cells,the direct delivery of AuNP probes into the cytoplasm for real-time imaging remains a difficult barrier for many cytoplasm-targeting agents.Here,we prepare AuNP@gel by wrapping a multi-functional nanogel structure on the surface of a single AuNP probe by in-situ polymerization in order to directly deliver AuNP probes into the cell cytoplasm.Compared with the pep-AuNP probes,which are trapped inside lysosomes for long periods,the AuNP@gel probes use the proton-sponge effect to effectively disrupt endo/lysosomal membranes and remain in the cytoplasm.In addition,the AuNP@gel probes rapidly escape from endo/lysosomes to avoid the complex environment that interferes with the stability of the AuNP probes and the lysosomal-storage trigger the upregulation of oxidative stress into the cells.The nanogel structure enables the AuNP probes to avoid some detrimental effects and to achieve high-fidelity fluorescence signals in the cells.Compared to traditional strategies for lysosomal escape,this one-step in-situ polymerization procedure avoids the complicated modification of additional ligands and is generally applicable to peptide-,DNA-,and polymerlinked AuNP probes.