论文部分内容阅读
设S~(n+p)(1)是一单位球面,M~n是浸入S~(n+p)(1)的具有非零平行平均曲率向量的n维紧致子流形.证明了当n≥4,p≥2时,如果M~n的Ricci曲率不小于(n-2)(1+H~2),则M~n是全脐的或者M~n的Ricci曲率等于(n-2)(1+H~2),进而M~n的几何分类被完全给出.