论文部分内容阅读
【目的】设计基于双目视觉与深度学习的番茄本体特征检测系统,实现番茄本体特征的自动无损检测,为水肥一体化和智慧农业提供技术支持。【方法】采集4000张番茄图像作为研究样本,利用基于深度学习SSD_MobileNet卷积神经网络的番茄主要器官检测算法,对番茄植株、茎、花、果实和叶进行检测。基于双目视觉的图像测量算法对各器官目标区域中株高、茎直径、果径和叶面积进行特征提取。【结果】利用SSD_MobileNet网络模型对研究样本进行训练和测试,调用训练好的模型对番茄各器官进行识别和定位,对番茄植株、茎、花